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Statistics of selectively neutral genetic variation
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Random models of evolution are instrumental in extracting rates of microscopic evolutionary mechanisms
from empirical observations on genetic variation in genome sequences. In this context it is necessary to know
the statistical properties of empirical observables~such as the local homozygosity, for instance!. Previous work
relies on numerical results or assumes Gaussian approximations for the corresponding distributions. In this
paper we give an analytical derivation of the statistical properties of the local homozygosity and other empiri-
cal observables assuming selective neutrality. We find that such distributions can be very non-Gaussian.
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For more than thirty years, microscopic random models
genetic evolution have been the focus of a substantial
search effort in theoretical biology@1–4#. In the future, such
microscopic models and their statistical analysis will be
yet increasing significance in this field: the amount of ac
rate and comprehensive data on the genetics of viruses,
teria, and especially the human genome@5–7# has increased
so considerably that it is now possible to test microsco
models of genetic evolution.

Genetic information is encoded in the linear sequence
nucleotides in DNA molecules; the four different nucleotid
occurring in DNA~adenosine, cytosine, guanine, and thy
ine! are usually denoted by A, C, G, and T. A sequence o
few hundred or a few thousand of these forms a gene,
referred to as a locus. Mutations change individual nuc
otides~e.g., from A to C! and thus create modified version
of loci. The resulting different types of loci are also know
as allelic types. Because loci consist of many nucleotide
each of which can be changed by mutation independe
from the others—the number of possible allelic types is ty
cally very large. To a good approximation it can thus
assumed that every mutation creates a new allelic type.
is the defining feature of theinfinite-alleles model@1#.

Empirically, genetic variation is recorded by measuri
the frequenciesva

( l ) of each allelic typea at each locusl.
Genetic variation reflects the microscopic processes of e
lutionary dynamics. The simplest model of evolution pr
ceeds by sampling with replacement each generation f
the previous generation~at constant population sizeN). In
addition, a number of microscopic processes take place,
happening at a constant~but generally unknown! rate. One
such process is mutation, measured asu52Nm wherem is
the probability of mutation per locus per generation~in a
haploid population!. Another such process is the exchange
genetic material between individuals of a population m
sured asC52Nc wherec is the probability of an exchang
event per locus per generation@8#. C is termed the recombi
nation rate.

The model of genetic evolution described here is cal
the constant-rate neutral mutation process, referred to as
neutral processin the following. It is a stochastic model an
assumes that no selective forces act. The neutral proce
one of the most significant microscopic models of gene
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evolution: not only does it provide a model for genetic var
tion at loci unaffected by selection, deviations between e
pirical observations and predictions of this neutral proc
allow for a qualitative characterization of selective effec
~see@9#!.

There is by now an overwhelming amount of work, bo
theoretical and empirical, on the neutral process for
infinite-alleles model. A convenient way of simulating th
process on a computer is to consider genealogies of sam
of a given population@3,10,11# in the limit of N→`. Ran-
dom samples are most effectively generated by creating
dom genealogies. In this way, statistics of empirical obse
ables may be obtained using Monte Carlo simulatio
Another possibility is to simulate Ewen’s sampling formu
@2# which determines the statistics of the neutral process
the limit of largeC. Analytical work has mostly focused o
calculating expectation values and variances of empirical
servables@12#. Distributions of even the simplest empirica
observables~such as the one-locus homozygosity@2#! are not
known analytically. The difficulty is that moments of empir
cal observables are usually calculated by expanding th
into a sum of identity coefficients@12#. This procedure is
impractical for high moments.

At the same time, the form of such distributions is of gre
interest: for example, they characterize sample-to-sam
fluctuations. More importantly, they can be used to estab
confidence intervals for empirical observations. To date, s
confidence intervals have routinely been obtained fr
Monte Carlo calculations@13,14#. Alternatively, it has been
assumed that the distributions are well approximated
Gaussians@15#.

The aim of this paper is to calculate distributions of e
pirical observables~such as the homozygosity! in the neutral
process for the infinite-alleles model. The remainder is or
nized as follows: first the results for a single locus are
scribed, and then those for two and more loci. Finally, i
plications of the results are discussed.

Consider thehomozygosity F2, the probability that a pair
of alleles~in a sample of sizen with m allelic types! has the
same allelic type. In terms of the allelic frequencies th
probability can be expressed as~largen)

F25 (
a51

m

va
2 . ~1!
©2002 The American Physical Society01-1
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The statistics ofF2 is determined by the moments ofF2,

fk5^F2
k&, ~2!

where the average is over random genealogies accordin
the neutral process. Thefk may be calculated numerically i
at least two ways: by generating random genealog
@10,3,11# or by evaluating Ewen’s sampling formula@16#.
Obtaining an analytical estimate of thefk is complicated by
the fact that the allelic frequenciesva in Eq. ~1! are not
independently distributed. For instance, they must satisfy
constraint(a51

m va51.
To obtain analytical results we seek an approximate r

resentation of the neutral process in terms ofindependent
random numbers. When only one locus is of interest, non
combination models apply, irrespective of how much ge
exchange actually occurs. In this case the numbersca of
allelic typesa with given frequencyva are approximately
independently distributed@17#, albeit only for sufficiently
smallva . Unfortunately, this result does not yield the stat
tics of F2 sinceall frequenciesva enter in Eq.~1!, and not
just the smallva .

In the following we show how the distribution ofF2 can
be determined by means of a recursion for the frequen
va . Assume that there arem allelic types with frequencies
v1 ,v2 , . . . ,vm , obeying the normalization conditio
(a51

m va51. Add one allelic type; the correspondingm11
frequenciesva8 are defined as follows: draw a frequen
vm118 5zm with densityF(zm). To ensure normalization, de
fine vk85(12zm)vk for k51, . . . ,m. Thus

va85za21 )
b5a

m21

~12zb! ~3!

whereza ~for a>1) are independent random variables w
density F(za) and z051. For F(za)5u(12za)u21 it fol-
lows from@18,19# that~for large values ofn) the frequencies
va are distributed according to the neutral process.

The recursive definition~3! enables us to derive an ex
plicit expression for the moments ofF2: for largen

F2. (
a51

m

va
2 , F28. (

a51

m11

va8
25zm

2 1~12zm!2(
a51

m

va
2 . ~4!

Since the sum on the right-hand side does not depend onzm ,
it can be averaged independently ofzm . In the limit of large
n, F2 and F28 have the same distribution,F2;F28 . Using
^zk&F5G(11k)G(11u)/G(11k1u) and ^(12z) l&F

5u/( l 1u),

fk5u(
l 50

k21 S k
l D @2~k2 l !#!

2k
u

G~2l 1u!

G~2k1u!
f l . ~5!

Here and aboveG(x) is the Gamma function. Equation~5!
provides an analytical approximation for arbitrary mome
of F2, appropriate in the limit of large sample sizesn.

One could reconstruct the distribution functionP(x)
5Prob(F25x) of F2 from the moments~5!. It is, however,
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more convenient to derive the analog of Eq.~4! for P(x)
itself. By definition@see Eq.~4!#,

P~x!5E
0

1

dzF~z!P@~x2z2!/~12z!2# ~6!

for 0<x<1 and zero otherwise. This can be rewritten as

P~x!5E
0

1

dyQ~x,y!P~y! ~7!

with the kernel

Q~x,y!5
u

2a F S 11a

11yD u21

1S 12a

11yD u21

H~y2x!G
3HS x

12x
2yD ~8!

wherea[a(x,y)5Ax2(12x)y andH(z) is the Heaviside
step function. Note thatQ(x,y) exhibits a divergence a
x,y→0. Equation~7! is solved by expandingP(x) in a suit-
able set of basis functions on the interval@0,1#, resulting in
an eigenvalue problem. Figure 1 shows the resulting dis
butionsP(x) for four values ofu. Clearly, the statistics ofF2
is very non-Gaussian.

The calculations summarized above are not only of int
est in the case of one locus, as we show in the followingL
denotes the number of loci!. In the case of two loci (L52)
on the same stretch of DNA, the joint distribution of allel
frequenciesva

( l ) depends on the rateC of gene exchange
Consider~for largen)

F25
1

L (
l 51

L

F2
( l ) , F2

( l )5(
a

@va
( l )#2. ~9!

In the limit of largeC, the two genealogies forl 51 and l
52 are essentially independent and the frequenciesva

( l ) are
well approximated by Eq.~3! for eachl ~and largen). The

FIG. 1. P(x)5Prob(F25x) for L51 andu50.5, 1,2, and 5.
Inset: analytical results forP(x) compared to the Monte Carlo re
sults of @20#, for m510 andn550, n5500.
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distribution P(x)5Prob(F25x) is thus obtained from the
single-locusP(x) by convolution. The resulting distribution
is shown in Fig. 2. Empirically determined recombinati
rates are often so large that this result forP(x) is a good
approximation: in Fig. 2 two distributions ofF2 are shown,
for n5100, u51/2, andC51 and 10, obtained from Monte
Carlo simulations. One observes good agreement with
prediction~shaded!, even for values ofC as low asC51. It
must be emphasised that the distribution is markedly n
Gaussian. The wiggles in the Monte Carlo results are sta
tically significant; they are a consequence of the fin
sample size (n5100).

WhenL@1, and in the limit of largeC, the distribution of
F2 @as defined in Eq.~9!# is Gaussian, and its moments a
obtained as

fk5F11S k
2D 2 u

~21u!~31u!

1

LG~11u!2k. ~10!

In an empirical data set,n ~andm) are necessarily finite. I
must then be asked: to what extent are theza independently
and identically distributed for finiten ~and m)? Figure 3~a!
showsza values determined from empirical data onC. jejuni
@21#, at the locusGltA (n5194 andm527), in comparison
with the theory forn5`. The empiricalza are approxi-
mately identically distributed, except at the edges wh
finite-size effects are observed~remember thatz0[1).
Monte Carlo simulations forn5194 andm527 confirm the
effect of finite sample size. Figure 3~b! is a similar plot with
data taken from one Monte Carlo sample. The inset of F
3~b! shows that theza are indeed independently distribute
It can be concluded that the theory works well in the pres
case.

In the remainder two implications of our results are d
cussed. First, in practice it is necessary to decide whe
empirically observed frequencies at a given locus are con
tent with the neutral process. The standard statistical test~see
@2#, p. 263! uses the distribution ofF2 as an input~albeit
with the numberm of allelic types as a parameter and notu
as in the above equations!. Since the distribution ofF2 was

FIG. 2. P(x)5Prob(F25x) for two loci (L52) andu50.5, in
the limit of largeC andn ~shaded!. Also shown are results of Monte
Carlo simulations forn5100 andC510 ~solid line! and C51
~dashed line!.
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unknown, it was usually determined by Monte Carlo sim
lations. Now, however, the result~7!,~8! can be used: for
m * logn, Eqs.~7!,~8! apply independently of whetherm or
u is taken as the parameter. The corresponding distribut
are compared to Monte Carlo data@20# in Fig. 1. Shown are
two cases:m510,n550 andm510,n5500. In both cases
the agreement between our results and those of Monte C
simulations is very good.

Second, many recent empirical studies~see, for instance
@13,14,22#! have analyzed the extent of gene exchange
common measure is the varianceVD of the number of pair-
wise differences at all loci under consideration. In the lim

FIG. 3. ~a! Frequenciesza from empiricalva ~locusGltA in C.
jejuni @21#!, compared to the neutral model forn→` ~dashed line!.
Also shown are results of Monte Carlo simulations for finiten
5194 ~solid line!. ~b! is a similar plot with data taken from on
Monte Carlo sample. The inset shows the correlation strength
tweenza andzb for n5194 and 27 alleles. Black corresponds to fu
correlation.

FIG. 4. Null distribution ofVD for L54, andu50.5, 1, 2, and 5
~in the limit of largeC, the range ofVD is 0<VD<L/4).
1-3
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of C→` ~linkage equilibrium! ^VD&5^( l 51
L (12F2

( l ))F2
( l )&

„for the neutral process this evaluates toLu(41u)/@(11u)
3(21u)(31u)#, see@12#…. However, for finite values ofC
~linkage disequilibrium!, and especially for smallC, the ex-
pected value ofVD is larger. The empirically determine
value of VD can be compared to a critical value obtain
under the null hypothesis that all loci are in linkage equil
a
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ne

ro

e

04090
-

rium. The corresponding null distribution is usually obtain
using Monte Carlo simulations@13,14#.

In cases where the neutral model applies, the null dis
bution of VD can be determined from Eqs.~5!, ~7!, and~8!.
Consider first the case of largeL, where the null distribution
is approximately Gaussian. UsingVD;( l 51

L (12F2
( l ))F2

( l )

for largeC, one obtains
Var@VD#5L@f422f31f22~f12f2!2#5L
2u~18722420u2584u21229u31163u4123u51u6!

~11u!2~21u!2~31u!2~41u!~51u!~61u!~71u!
. ~11!
al
eu-
We
ns,
ex-
the
le
ange
ns.
This variance is always larger than the corresponding qu
tity in a random shuffling scheme@13,14# because the latte
is conditioned on the homozygosity, and not onu. WhenL is
small, the null distribution will be very non-Gaussian, as t
above results for the distribution ofF2 show. In Fig. 4, the
null distribution of VD @as determined from Eqs.~7!,~8!# is
shown for the case ofL54 and for four values ofu. Note
that the forms of the distributions imply large, asymmet
confidence intervals. Finally, form* ln n, the distributions in
Fig. 4 are insensitive to whether the process is conditio
n-

d

on fixedu or fixed k @23#.
We have shown that distribution functions of empiric

observables measuring genetic diversity in selectively n
tral populations may exhibit strong non-Gaussian tails.
have found analytical approximations for these distributio
valid for large sample sizes and in the limit where gene
change is frequent; and have discussed implications for
statistical analysis of genetic variation. It is highly desirab
to extend the present results to the case where gene exch
is rare, corresponding to clonal or nearly clonal populatio
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u-
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