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Statistics of selectively neutral genetic variation
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Random models of evolution are instrumental in extracting rates of microscopic evolutionary mechanisms
from empirical observations on genetic variation in genome sequences. In this context it is necessary to know
the statistical properties of empirical observalilasch as the local homozygosity, for instanderevious work
relies on numerical results or assumes Gaussian approximations for the corresponding distributions. In this
paper we give an analytical derivation of the statistical properties of the local homozygosity and other empiri-
cal observables assuming selective neutrality. We find that such distributions can be very non-Gaussian.
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For more than thirty years, microscopic random models okvolution: not only does it provide a model for genetic varia-
genetic evolution have been the focus of a substantial retion at loci unaffected by selection, deviations between em-
search effort in theoretical biolodyL—4]. In the future, such pirical observations and predictions of this neutral process
microscopic models and their statistical analysis will be ofallow for a qualitative characterization of selective effects
yet increasing significance in this field: the amount of accu{se€[9]). )
rate and comprehensive data on the genetics of viruses, ba%- There is by now an overwhelming amount of work, both

teria, and especially the human genoffie 7] has increased theoretical and empirical, on the neutral process for the
-dnflnlte-alleles model. A convenient way of simulating this

process on a computer is to consider genealogies of samples
?f a given populatio3,10,11 in the limit of N—oco. Ran-
dom samples are most effectively generated by creating ran-

ing in DNA(ad . tosi ; d th dom genealogies. In this way, statistics of empirical observ-
occurring in adenosine, cytosine, guanine, and thym- g, qq may be obtained using Monte Carlo simulations.

ine) are usually denoted by A, C, G, and T. A sequence of aynther possibility is to simulate Ewen's sampling formula
few hundred or a few thousand of these forms a gene, als@| which determines the statistics of the neutral process in
referred to as a locus. Mutations change individual nuclethe Jimit of largeC. Analytical work has mostly focused on
otides(e.g., from A to G and thus create modified versions ca|culating expectation values and variances of empirical ob-
of loci. The resulting different types of loci are also known servableq12]. Distributions of even the simplest empirical
as allelic types. Because loci consist of many nucleotides—observablegsuch as the one-locus homozygos$@y) are not
each of which can be changed by mutation independentlknown analytically. The difficulty is that moments of empiri-
from the others—the number of possible allelic types is typi-cal observables are usually calculated by expanding them
cally very large. To a good approximation it can thus beinto a sum of identity coefficientf12]. This procedure is
assumed that every mutation creates a new allelic type. Thisnpractical for high moments.
is the defining feature of thimfinite-alleles modeJ1]. At the same time, the form of such distributions is of great
Empirically, genetic variation is recorded by measuringinterest: for example, they characterize sample-to-sample
the frequenciesxug) of each allelic typea at each locud. fluctuations. More importantly, they can be used to establish
Genetic variation reflects the microscopic processes of evasonfidence intervals for empirical observations. To date, such
lutionary dynamics. The simplest model of evolution pro-confidence intervals have routinely been obtained from
ceeds by sampling with replacement each generation frorivlonte Carlo calculation§l3,14. Alternatively, it has been
the previous generatioat constant population sizd). In assumed that the distributions are well approximated by
addition, a number of microscopic processes take place, eaébaussiang15].
happening at a constagiut generally unknownrate. One The aim of this paper is to calculate distributions of em-
such process is mutation, measureddas2Nu wherey is  pirical observablessuch as the homozygosjtin the neutral
the probability of mutation per locus per generation a  process for the infinite-alleles model. The remainder is orga-
haploid populatioh Another such process is the exchange ofnized as follows: first the results for a single locus are de-
genetic material between individuals of a population meascribed, and then those for two and more loci. Finally, im-
sured asC=2Nc wherec is the probability of an exchange Pplications of the results are discussed.
event per locus per generatip8]. C is termed the recombi- Consider thehomozygosity F, the probability that a pair
nation rate. of alleles(in a sample of size with m allelic typeg has the
The model of genetic evolution described here is calledsame allelic type. In terms of the allelic frequencies this
the constant-rate neutral mutation processeferred to as probability can be expressed dargen)
neutral processn the following. It is a stochastic model and m
assumes that no selective forces act. The neutral process is _ 2
. L K . . Fz E W, . (1)
one of the most significant microscopic models of genetic a=1

models of genetic evolution.
Genetic information is encoded in the linear sequence o
nucleotides in DNA molecules; the four different nucleotides
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The statistics of, is determined by the moments B#,
b= (F3), 2

where the average is over random genealogies according to
the neutral process. Thg, may be calculated numerically in

at least two ways: by generating random genealogies
[10,3,17 or by evaluating Ewen’s sampling formu[46].
Obtaining an analytical estimate of tlgg is complicated by

the fact that the allelic frequenciaes, in Eqg. (1) are not
independently distributed. For instance, they must satisfy the
constraintS]_ ;w,=1.

To obtain analytical results we seek an approximate rep-
resentation of the neutral process in termsirafependent . .
random numbers. When only one locus is of interest, nonre- 0 0.2 0.4 0.6 0.8 1
combination models apply, irrespective of how much gene x
exchange actually occurs. In this case the numlgref
allelic typesa with given frequencyw, are approximately
independently distributed17], albeit only for sufficiently
small w,. Unfortunately, this result does not yield the statis-

tics of F, sinceall frequenciesw, enter in Eq.(1), and not |\ Jre convenient to derive the analog of Hd) for P(x)

just the smallw, . o itself. By definition[see Eq(4)],
In the following we show how the distribution &f, can

be determined by means of a recursion for the frequencies 1 5 5

w,. Assume that there ama allelic types with frequencies P(x)= fo dz®(2)P[(x—2%)/(1-2)7] (6)
wi,0,, ...,0,, O0beying the normalization condition

SaL10,=1. Add one allelic type; the correspondimgt1  for 0<x<1 and zero otherwise. This can be rewritten as
frequenciesw, are defined as follows: draw a frequency

FIG. 1. P(x)=ProbfF,=x) for L=1 and #=0.5,1,2, and 5.
Inset: analytical results foP(x) compared to the Monte Carlo re-
sults of[20], for m=10 andn=50, n=500.

a.),’nﬂfzm with density®(z,,). To ensure normalization, de- P(x)= fldyQ(x,y)P(y) @
fine wy=(1—2z,)wy for k=1, ... m. Thus 0
m—1 with the kernel
0;=z1 11 (1-2) (3) b Leall 1 aet
QXY)=5-ll 75| Tlazg] Hy—x
wherez, (for a=1) are independent random variables with 2alilty 1ty
density ®(z,) andzo=1. For ®(z,)=60(1—2z,)% ! it fol- X
lows from[18,19 that(for large values oh) the frequencies xXH 1—x ) (8)

w, are distributed according to the neutral process.

The recursive definitior3) enables us to derive an ex- wherea=a(x,y) = Xx— (1—x)y andH(z) is the Heaviside
plicit expression for the moments &f: for largen step function. Note tha€(x,y) exhibits a divergence as
m a1 m x,y—0. Equation(7) is solved by expanding(x) in a suit-
— 2 - 12_ 2 N2 2 able set of basis functions on the intery8l1], resulting in
F2 azl war F2 azl 0" = Zy (1= 2Zm) azl Wy (4) an eigenvalue problem. Figure 1 shows the resulting distri-
butionsP(x) for four values ofg. Clearly, the statistics df,
Since the sum on the right-hand side does not depers},on is very non-Gaussian.
it can be averaged independentlyzyf. In the limit of large The calculations summarized above are not only of inter-
n, F, and F, have the same distributios,~F;. Using estin the case of one locus, as we show in the following (
(Z¢=T(1+K)I(1+6)/T'(1+k+6) and ((1-2)')y  denotes the number of Igciln the case of two locil(=2)

=0/(1+ ), on the same stretch of DNA, the joint distribution of allelic
1 frequencieScug) depends on the rat€ of gene exchange.
L (k\[2(k—=D]'  T(21+6) Consider(for largen)
b2, |) 2k  Takrp?  © L
=— () (M — (2
Here and abové'(x) is the Gamma function. Equatids) Fa={ 21 P2l F2 ; [wa]" ©
provides an analytical approximation for arbitrary moments
of F,, appropriate in the limit of large sample sizes In the limit of largeC, the two genealogies fdr=1 and|
One could reconstruct the distribution functid®(x) =2 are essentially independent and the frequenelsare

=Prob(F,=x) of F, from the momentg5). It is, however, well approximated by Eq(3) for eachl (and largen). The

040901-2



RAPID COMMUNICATIONS

STATISTICS OF SELECTIVELY NEUTRAL GENETT . . . PHYSICAL REVIEW E 65 040901R)
25}
0.4 (a)
27 3
I
0.2 o !
=15/~ N 1 SO R oo o ¢ o
R 0
1r 0 5 10 15 20 25
a
0.5¢ 1
0 0.8 (b)
0 02 0.4 0.6 08 1
m 0.6
FIG. 2. P(x)=ProbF,=x) for two loci (L=2) andg=0.5, in N
the limit of largeC andn (shadegl Also shown are results of Monte 04 ; o6
Carlo simulations fom=100 andC=10 (solid line and C=1 b
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distribution P(x) =Prob(F,=x) is thus obtained from the z

single-locusP(x) by convolution. The resulting distribution

is shown in Fig. 2. Empirically determined recombination FIG. 3. (a) Frequencieg, from empiricalw, (locusGlItA in C.

rates are often so large that this result ®¢x) is a good jejuni[21]), compared to the neutral model fior- (dashed ling

approximation: in Fig. 2 two distributions &, are shown, Also shown are results of Monte Carlo simulations for finite

for n=100, #=1/2, andC=1 and 10, obtained from Monte =194 (solid line). (b) is a similar plot with data taken from one

Carlo simulations. One observes good agreement with thMonte Carlo sample. The inset shows the correlation strength be-

prediction(shaded} even for values of as low asC=1. It tweenza_ andz, for n=194 and 27 alleles. Black corresponds to full

must be emphasised that the distribution is markedly nongerelation.

Gaussian. The wiggles in the Monte Carlo results are statis-

tically significant; they are a consequence of the finiteunknown, it was usually determined by Monte Carlo simu-

sample size r{=100). lations. Now, however, the resul?),(8) can be used: for
WhenL> 1, and in the limit of largeC, the distribution of M =logn, Eqgs.(7),(8) apply independently of whethen or

F, [as defined in Eq(9)] is Gaussian, and its moments are ¢ is taken as the parameter. The corresponding distributions
obtained as are compared to Monte Carlo d4&0] in Fig. 1. Shown are

two casesm=10n=50 andm=10n=500. In both cases,
x the agreement between our results and those of Monte Carlo
(1+6)"% (10 sjmulations is very good.
Second, many recent empirical studiese, for instance,
In an empirical data set, (andm) are necessarily finite. It [13,14,23) have analyzed the extent of gene exchange. A
must then be asked: to what extent are zgéndependently common measure is the variangg of the number of pair-
and identically distributed for finite (andm)? Figure 8a)  Wise differences at all loci under consideration. In the limit

showsz, values determined from empirical data Gnjejuni

k
2

20

b= (2+6)(3+6) L

1+

[21], at the locusGItA (n=194 andm=27), in comparison 6

with the theory forn=<«. The empiricalz, are approxi- 1
mately identically distributed, except at the edges where 5t 2 J
finite-size effects are observe@temember thatzy=1). 5 \
Monte Carlo simulations fon=194 andm=27 confirm the w4t \

effect of finite sample size. Figure!§ is a similar plot with |

data taken from one Monte Carlo sample. The inset of Fig. N
3(b) shows that the, are indeed independently distributed. Fg
It can be concluded that the theory works well in the present £ 2ot

case. 0.5
In the remainder two implications of our results are dis-
cussed. First, in practice it is necessary to decide whether

—_

empirically observed frequencies at a given locus are consis- 0 -

tent with the neutral process. The standard statistical(sest 0 0.2 0.4 0.6 0.8 1

[2], p. 263 uses the distribution oF, as an input(albeit r

with the numbem of allelic types as a parameter and rot FIG. 4. Null distribution ofVp, for L=4, and¢=0.5, 1, 2, and 5

as in the above equationsSince the distribution oF, was  (in the limit of largeC, the range oW is 0<Vp=<L/4).
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of C—o (linkage equilibrium (VD>=<E|L:1(1—F(2'))F(2')> rium. The corresponding null distribution is usually obtained
(for the neutral process this evaluates t(4+ ¢)/[ (1+¢)  Using Monte Carlo simulatior{s3,14. _ o
X(2+ 6)(3+ )], see[12]). However, for finite values of In cases where the neutral model applies, the null distri-
(linkage disequilibriumy, and especially for sma, the ex-  bution of Vp can be determined from Eq&), (7), and(8).
pected value ofVp is larger. The empirically determined Consider first the case of large where the null distribution
value of V can be compared to a critical value obtainedis approximately Gaussian. Usingp~3f_,(1—F$)F{)
under the null hypothesis that all loci are in linkage equilib-for large C, one obtains

26(1872— 4200—5840%+ 2290°+ 1630* + 236°+ 4°)

= L[ g2 —(h1—by)?]= .
VarVol =Ll 4= 2¢a+ 62~ (61 ¢2)) L(1+6)2(2+0)2(3+0)2(4+0)(5+0)(6+0)(7+6)

(11)

This variance is always larger than the corresponding quaren fixed 6 or fixed k [23].

tity in a random shuffling schemd 3,14] because the latter We have shown that distribution functions of empirical

is conditioned on the homozygosity, and not@nWhenL is  observables measuring genetic diversity in selectively neu-
small, the null distribution will be very non-Gaussian, as thetral populations may exhibit strong non-Gaussian tails. We
above results for the distribution &, show. In Fig. 4, the have found analytical approximations for these distributions,
null distribution of V [as determined from Eq$7),(8)] is  valid for large sample sizes and in the limit where gene ex-
shown for the case df =4 and for four values of. Note  change is frequent; and have discussed implications for the
that the forms of the distributions imply large, asymmetricstatistical analysis of genetic variation. It is highly desirable
confidence intervals. Finally, fon=In n, the distributions in  to extend the present results to the case where gene exchange
Fig. 4 are insensitive to whether the process is conditioneds rare, corresponding to clonal or nearly clonal populations.
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